
Acta Technica 62 (2017), No. 5A, 575�578 c© 2017 Institute of Thermomechanics CAS, v.v.i.

A fast algorithm for freeze-tag problem

Suyuan Luo
2, 3

Abstract. The Freeze-tag problem arises as an important model in message spreading among

all kinds of networks in recent years. We developed a novel algorithm for Freeze-tag problem which

is a �rst O(
√
logn)-approximation algorithm for the general unmetric space in which a metric

inequality is not assumed.

Key words. Freeze-tag problem, approximation algorithm, metric embedding, divide and

conquer.

1. Freeze-Tag Problem

The Freeze-tag problem (FTP) arises as an important model in message spreading
among all kinds of networks in recent years[1,2,3]. In the FTP we have n messengers,
which are located at nodes in a distance space (e.g., the vertices of an edge-weighted
graph). Initially, there is one awake or active messenger and all other messengers are
asleep, i.e., in a stand-by mode. Our objective is to �wake up� all of the messengers as
quickly as possible. In order for an active messenger to awaken a sleeping messenger,
the awake messenger must travel to the location of the slumbering messenger. Once
awake, this new messenger is available to assist in rousing other messengers. The
objective is to minimize the makespan, that is, the time when the last messenger
awakens.

The FTP is obviously important in information spreading on networks. Fur-
thermore, what makes the FTP particularly intriguing is that any nonlazy strategy
yields an O(logn)-approximation(Proposition 1.1 of [4]), while the strategy for gen-
eral metric spaces that yields an o(logn)-approximation is di�cult to achieve. Arkin
et al. [4] showed that even simple versions of the problem (e.g., in star metrics) are
NP-complete. They give an e�cient polynomial-time approximation scheme (PTAS)
for geometric instances on a set of points in any constant dimension δ. They also

1Acknowledgement - This paper is supported by National Natural Science Foundation of China
under Grant No.11471205;supported by Innovative Team Supporting Project at Shanghai Univer-
sity of Finance and Economics

2Workshop 1 - School of Information Management and Engineering, Shanghai University of
Finance and Economics, Shanghai, China, 200433

3Corresponding author: Suyuan Luo; e-mail: suyuanluo@126.com

http://journal.it.cas.cz

suyuanluo@126.com

576 SUYUAN LUO

give a variety of results for star metrics (including an O(1)-approximation) and for
ultrametrics, for which an o(logn)-approximation is possible. Bender, Arkin, Ge[3]
improved the result in several special cases. They obtain an (L

d logn)-approximation
where L is the longest edge and d is the diameter of the graph.

Recently, J. K nemann, A. Levin and A. Sinha[5,6] proposed an O(
√

logn)-
approximation algorithm for the bounded degree minimum diameter spanning tree
problem. K?nemann's paper claims the following fact: Suppose that there is a tree
T with maximum node-degree B and diameter ∆ in a given graph, then, Algorithm,
BDST (G,∆), produces a tree T apx with maximum node-degree B and diameter
O(

√
logBn ·∆).

Noticing the fact an α-approximation for BDST implies an algorithm for FTP
with the same performance ratio, the algorithm brings the �rstO(

√
logn)-approximation

algorithm for FTP. The insight in this reduction derives from the fact a wake-up
tree in optimal schedule waking procedure is actually an arboresence each of whose
node has out-degree at most the number of messengers at that node.

The main idea in the algorithm relies on a combination of �ltering and divide
and conquer. They partition the node set of the graph G into clusters such that the
diameter of each cluster is low. Then they retain one represent node for each cluster,
and de�ne an arti�cial degree bound for this representative node to account for the
degree capacity of the entire cluster. The details of algorithm and performance ratio
are both not easy in implementation.

1.1. MainContribution

In this work we developed a novel algorithm for FTP problem which has the same
performance ratio for the general unmetric space in which a metric inequality is not
assumed. The algorithm developed here is quite simple in both implementation and
proving. The main insight behind this algorithm is that a good strategy is to always
�rst wake up the nodes in the denser region greedily. And we also propose some
possible direction to derive an algorithm with an approximation bound stronger than
o(
√

logn).
Also, as a direct implication of metric embedding, we notice that there is a

simple algorithm which can bring a O(
√

loglogn)-approximation algorithm for FTP
in Euclidean space, which is the best algorithm for this case currently.

2. Algorithm

The purpose of this algorithm, is to �nd an approximation algorithm, whose ratio
is O(

√
logn) or better, for a graph G.

We de�ne n the number of messengers in the graph G. Start with m messengers
at a node O. Here we de�ne m to be the largest number of messengers on any single
node in the graph G. D is the diameter of the graph G by checking the optimal
wakeup tree.

For each node P in G, and a positive real number r, de�ne D(P, r) to be the
subgraph of G, all nodes in it are within distance at most r to the node P . And let

A FAST ALGORITHM FOR 577

n be the number of all messengers in the graph G.
Improved O(

√
logn) algorithm:

1. Let k=
√

logn/m. And for each i ∈ N , �nd the Gi=D(Pi, ri) with no less

than m(2k)
i
messengers, and ri is the premium.

2. Now we send the messengers to P1, then wake G1 naively.
3. After waking Gi, send all the messengers to Pi+1, then wake Gi+1 naively.
Lemma 1 This algorithm is O(

√
logn)-approximation.

Proof It is because of the following reasons:
1. ri at the �rst step can be found by binary search in polynomial time. We just

need to begin binary search from D, and use the traverse of a graph at most n times
at each step of binary search. Note that the number of messengers in a traversed
subgraph will increase at most m when one more node is added in, so it is feasible
to get Gi as we de�ne. It is easy to restrict the number of messengers in Gi is less
than 2∗m(2k).

2. Let's �rst look at the optimal wakeup tree (we don't know which one it is, but
there exists one for the purpose of analysis). The time to wake up all messengers
following the order of wakeup tree is optimal. We represent it by OPT . De�ne ti to
be the optimal time by which the number of awaked messengers grows exactly from
m(2k)i−1 to m(2k)i.

Note that each ti could overlap with ti+1 in the optimal wakeup tree. But the
overlapping can only happy at most once for each part, so we get 2 ∗OPT ≥

∫
i
ti.

3. For each i, the time ai spend in the algorithm on Gi−1 to Gi satis�es:

ai ≤ D + (k + 1)(2 ∗ ri) ≤ D + 4(k + 1)ti ≤ D + 8kti,

i.e., the time spent in step 3 in algorithm.
Note: by naive method, de�ne mi = m(2k)i, then we can see mi

mi−1
= 2k, then

the activated nodes will be at least doubled at each further step, so all nodes will be
activated in at most k steps. and each step will take at most 2 ∗ ri cost.

Note: To wake m(2k)i many nodes in time less than ri/2, all the waked messen-
gers would be inside distant ri/2 from the starting point, which contradicts to the
de�nition of ri. So ti ≥ ri/2.

4. Sum up the above 2 results, we know that the total time is at most
∫
i
ai ≤

kD + 8k(2 ∗ OPT), which is obviously 18k ∗ OPT , i.e., O(
√

logn)-approximation.
(OPT ≥ D/2).

3. Ideas for Improved Algorithm:

Notice in the above algorithm, we wake each Gi only by the simple algorithm.
So if we set the number of level to be (logn)1/3, and try some better algorithm for
each Gi, the end result would possibly be a O((logn)1/3)-approximation algorithm.

There is some gap we can continue to explore. It seems that we should not
implement

√
logn-opt to Gi since it cannot guarantee that k ∗ri part, i.e., we cannot

wake up all nodes in
√

logn ∗ ri time. The best we can do is just to wake up Gi in√
logn-opt. we consider avoiding it by embedding correctly.

578 SUYUAN LUO

If we can make it successfully by a right embedding, then by applying this al-
gorithm to Gi, and reducing levels, we can get O((logn)1/4 approximation. If we
do it multiple times, we can get O(logn)1 approximation for any S.And if we ap-
ply it loglogn times, by some calculation, we could see this becomes a O(loglogn)-
approximation hopefully. Currently we are working on it.

4. Euclidean space

If n points are in Euclidean space, we already have 3+-opt algorithm if the di-
mension is less than o(log/loglogn). And note that there is a well known embedding
theorem by Johnson-Lindenstrauss[7]: we can embed one n-points structure in eu-
clidean space to O(1

2 logn)-dim space with distortion 1+. So here if we let =
√

loglogn,
we can get O(

√
loglogn)-approximation for general Euclidean case.

Lemma 2 One O(
√
loglogn)-approximation algorithm for euclidean space is di-

rect by applying Johnson-Lindenstrauss embedding.

References

[1] S.Albers, M.R.Henzinger: Exploring unknown environments. In Proc. 29th ACM
Sympos (1997) 416�425.

[2] S.Albers, K.Kursawe, S. Schuierer: Exploring unknown environments with ob-
stacles. In Proc. 10th ACM-SIAM Sympos. Discrete algorithms (1999) 842�843.

[3] E.M.Arkin, M.A.Bender, P.A.A. Laura: Improved approximation algorithm
for the freeze-tag problem. SPAA (2003).

[4] E.M.Arkin, M.A.Bender, S. P. Fekete: he Freeze-Tag Problem: How to wake
up a swarm of messengers. In Proc. 13th ACM-SIAM Sympos (2002) 568�577.

[5] J.Konemann, A. Levin, A. Sinha: Approximating the degree-bounded minimum di-
ameter spanning tree problem. In Proceedings of the 6th International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX). Lec-
ture Notes in Computer Science 2676 (2003) 109�121.

[6] J.Konemann, A. Levin, A. Sinha: Approximating the degree-bounded minimum di-
ameter spanning tree problem. Algorithmica 41 (2004), No. 2, 117�129.

[7] W.B. Johnson, J. Lindenstrauss: Extensions of Lipschitz mappings into a Hilbert
space. Contemporary mathematics 26 (1984), No. 1, 189�206.

Received November 16, 2017

	Suyuan Luo: A fast algorithm for freeze-tag problem
	Freeze-Tag Problem
	Algorithm
	Ideas for Improved Algorithm:
	Euclidean space

